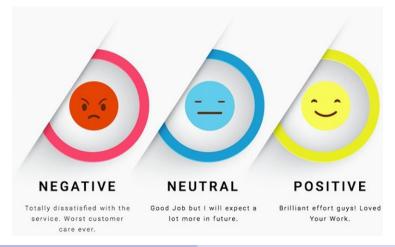
Advances in Sentiment Attitude Extraction task


Nicolay Rusnachenko

Bauman Moscow State Technical University, Moscow, Russia kolyarus@yandex.ru nicolay-r.github.io

November 26'th, 2020

Text classification
Targeted sentiment analysis
Aspect Level Sentiment Analysis
What is Opinion in Sentiment Analysis?
Introduction

Sentiment Analysis

Text classification
Targeted sentiment analysis
Aspect Level Sentiment Analysis
What is Opinion in Sentiment Analysis?

Text classification

The first attempt to propose the task[1]:

$$\langle d \rangle \to c$$

d – document c – related class positive, negative

"The picture quality of this camera at night time is amazing"

$$\langle d
angle
ightarrow extit{positive}$$

^[1] Peter Turney. "Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews". In: *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*. 2002, pp. 417–424.

Text classification
Targeted sentiment analysis
Aspect Level Sentiment Analysis
Introduction
Introduction

Targeted sentiment analysis

Considering entity as an input parameter^[2]:

$$\langle d, {\color{red} e_{j}} \rangle
ightarrow c$$

e_j – object, or entity

"The picture quality of this camerae at night time is amazing, especially with tripode"

$$\langle d, camera \rangle \rightarrow positive \quad \langle d, tripod \rangle \rightarrow ?$$

^[2] Long Jiang et al. "Target-dependent twitter sentiment classification". In: *Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies.* 2011, pp. 151–160.

Text classification
Targeted sentiment analysis
Aspect Level Sentiment Analysis
What is Opinion in Sentiment Analysis?
Introduction

Aspect Based Sentiment Analysis

Focusing on two core tasks^[3]:

- Aspect extraction;
- Aspect sentiment analysis:

$$\langle d, e_j, \frac{a_k}{a_k} \rangle \rightarrow c$$

a_k – aspect, object characteristics

"The picture quality of this camerae is amazing ..." [3]

 $\langle d, camera, picture quality \rangle \rightarrow positive$

^[3] Bing Liu and Lei Zhang. "A survey of opinion mining and sentiment analysis". In: *Mining text data*. Springer, 2012, pp. 415–463.

Text classification
Targeted sentiment analysis
Aspect Level Sentiment Analysis
What is Opinion in Sentiment Analysis?
Introduction

Opinion Definition

Defined as follows^[3,4]:

$$\langle d, e_j, a_k, \frac{h_t}{l}, t_l \rangle \rightarrow c$$

$$h_t$$
 — author

$$t_{l}$$
 – time

^[4] Bing Liu et al. "Sentiment analysis and subjectivity.". In: ().

Text classification
Targeted sentiment analysis
Aspect Level Sentiment Analysis
What is Opinion in Sentiment Analysis?
Introduction

The source of opinion

$$\textcolor{red}{\textbf{author}} \rightarrow \textit{object}$$

Text classification
Targeted sentiment analysis
Aspect Level Sentiment Analysis
What is Opinion in Sentiment Analysis?
Introduction

Attitude Definition

Opinions between mentioned named entities (e_j, e_m) :

$$\langle d, e_j, e_m, a_k, h_t, t_l \rangle \rightarrow c$$

$$\begin{array}{c} e_m - \text{Subject} \\ e_j - \text{Object} \\ \text{(Subject} \rightarrow \text{Object)} \end{array}$$

Introduction
Machine Learning Methods
Manually developed collection
Automatically annotated collection
Conclusion

Sentiment Attitude Extraction

Example

Text domain: focusing on analytical articles^[5];

«As is apparent in Washington_{subj}, there is no place for objectivity on the subject of Russia_{obj}, irrespective of facts and events»

 $(Washington_{subj}, Russia_{obj}) \rightarrow negative$

^[5] Natalia Loukachevitch and Nicolay Rusnachenko. "Extracting sentiment attitudes from analytical texts". In: Proceedings of International Conference on Computational Linguistics and Intellectual Technologies Dialogue-2018 (arXiv:1808.08932) (2018), pp. 459–468.

Task aspects and problems

• Large amount of named entities (NE):

```
Ukraine<sub>e</sub>, Russia<sub>e</sub>, Russian Federation<sub>e</sub>
```

Conclusion

2 Text structure complexities:

```
« Trump<sub>e</sub> accused China<sub>e</sub> and Russia<sub>e</sub> of "playing devaluation of currencies" »  (\text{Trump}_{subj}, China_{obj}) \rightarrow \text{negative}   (\text{Trump}_{subj}, Russia_{obj}) \rightarrow \text{negative}
```

Methods

Focusing on Machine learning methods:

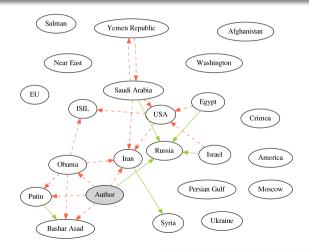
$$x_i \rightarrow c_i$$

 x_i – input text with opinion c_i – output label (pos, neg)

Methods: will be declared later.

Machine Learning Requirements

- Dataset;
- Occument separations: Train and Test.
 - Train for model training;
 - Test for model evaluation.


Introduction
Machine Learning Methods
Manually developed collection
Automatically annotated collection
Conclusion

Step 1. Manually developed collection

RuSentRel: Contents

- 73 large analytical articles;
- Text attitudes manual annotation, sentiment towards *named entities* (*NE*) as triplets (*Subject*, *Object*, *Label*), where:
 - Subject NE or "author"
 - Object NE
 - Label \in {pos, neg}
- Named Entities automatically labeled;
- List S of synonymous NE manually implemented.

Document Visualization

Dataset Statistics

73 large analytical articles divided into Train and Test collections (44 in train, 29 in test);

Average per doc.	Train	Test
Sentences	74.5	137
Attitudes	15	30
Named Entities	194	300
Named Entities (unique)	33.3	59.9

Attempt #1: How we treat sentiment attitude extraction task

$$\langle d, e_j, e_m, a_k, h_t, t_l \rangle \rightarrow c$$
 $e_m \rightarrow \text{Subject}$
 $e_j \rightarrow \text{Object}$
 $a_k \rightarrow \text{no aspects}$
 $h_t \rightarrow \text{single author}$
 $t_l \rightarrow \text{current time}$

Machine Learning Methods

- Conventional Methods linear and tree-based classifiers (SVM, Random Forest, Gradient Boosting);
- Neural Networks non linear optimisers.

Question

How to present input opinion:

- Feature-based list of features for document-level opinions;
- Ontext-based find sentence with the related attitude participants;

1. Feature-based [Conventional methods]

Participant based:

- The presence in the lists of countries or their capitals;
- The relative frequency of a NE or the whole synonym group in the document; the order of two named entities;
- Concrete lemmas of named entities are not used.

Context based (min, max, and avg values):

- The distance between participants in lemmas;
- Number of commas between the named entities;
- Lexicon-based (vocabulary of entries with preassigned sentiment scores).

2. Context-based [Neural Networks]

- Introducing context attitude a pair with its named entities (source: Subject, target: Object) in a context
 «Talking about the separation of the Caucasus region_e due to the confrontation between Russia_{subj} and Turkey_{obj} is not necessary, although there is a danger»
- Additional note: requres convertion from context→document level opinions and vice versa;

Introduction
Machine Learning Methods
Manually developed collection
Automatically annotated collection
Conclusion

Results

Method	Precision	Recall	F-measure
Baseline-neg	0.03	0.39	0.05
Baseline-pos	0.02	0.40	0.04
Baseline-random	0.04	0.22	0.07
SVM	0.09	0.36	0.15
Random forest	0.41	0.21	0.27
Gradient boosting	0.47	0.21	0.28
Convolutional networks	0.42	0.23	0.31
Human labeling agreement	0.62	0.49	0.55

Introduction
Machine Learning Methods
Manually developed collection
Automatically annotated collection
Conclusion

Step 2. Automatically annotated collection

Introduction
Machine Learning Methods
Manually developed collection
Automatically annotated collection
Conclusion

Problems and Motivation

• RuSentRel collection is pretty small;

Lexicons as a Knowledge Base

- Lexicons vocabulary of pairs (word, label);
- We depend on lexicons with more complicated structure, that allows to emphasize the presence of an attitude in context.

RuSentiFrames Lexicon Structure

Describes sentiments and connotations conveyed with a predicate in a verbal or nominal form.

- O Role Designation:
 - A0 is an argument exhibiting features of a Prototypical Agent;
 - A1 is a Theme.
- ② Dimentions:
 - the attitude of the author of the text towards mentioned participants;
 - polarity sentiment between participants;
 - effects to participants;
 - mental states of participants related to the described situation

Frame	"Одобрить" (Approve)		
roles	A0: who approves		
	A1: what is approved		
polarity	AO $ ightarrow$ A1, pos , 1.0		
	A1 $ ightarrow$ A0, pos, 0.7		
effect	A1, pos, 1.0		
state	A0, pos, 1.0		
	A1, pos, 1.0		

Table 1: Example description of frame "Одобрить" (Approve) in RuSentiLex lexicon.

Distant Supervision: Lexicons application in data labeling

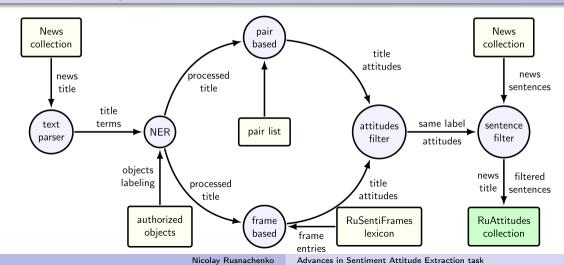
We apply lexicon to a large news collection, and compose RuAttitudes^[6] with the following assumptions:

News titles usually have a simple structure.

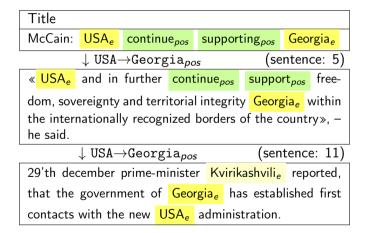
^[6] Nicolay Rusnachenko, Natalia Loukachevitch, and Elena Tutubalina. "Distant supervision for sentiment attitude extraction". In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019), 2019, pp. 1022–1030.

RuAttitudes: Collection of automatically labeled news

We perform news titles annotation in following ways:


• Pair-Based – attitudes with preassigned labels (using RuSentRel statistics):

$$\langle Subject, Object, label \rangle$$


Frame-Based – utilizing frame entries from the RuSentiFrames lexicon; matching the following pattern:

... Subject_e ...
$$\{frame_{A0 \rightarrow A1}\}_k$$
 ... Object_e ...

News processing workflow

RuAttitudes: News Example

Experiments

We additionally adopt the developed collection in training:

- Neural Networks^[6];
- Neural Networks with Attention^[7]: specific module that provide words weighting;

^[7] Nicolay Rusnachenko and Natalia Loukachevitch. "Attention-Based Neural Networks for Sentiment Attitude Extraction using Distant Supervision". In: The 10th International Conference on Web Intelligence, Mining and Semantics (WIMS 2020), June 30-July 3, 2020, Biarritz, France. 2020. doi: 10.1145/3405962.3405985. url: https://doi.org/10.1145/3405962.3405985.

What is Attention?

Is a Module that provides weighting of terms in context:

leading such a game, \underline{E}_{subj} will finally $lose_{pos}$ $trust-in_{pos}$ \underline{E}_{obj} and country \underline{E}

Additional source of features during training:

• Which words are related to the class (c) w.r.t. the Object (e_j) and Subject (e_m) (and other terms) of the particular context?

Attempt #2: How we treat sentiment attitude extraction task

$$\langle d, e_j, e_m, a_k, h_t, t_l \rangle o c$$
 $e_m o Subject$
 $e_j o Object$
 $a_k o frames, context words$
 $h_t o single author$
 $t_l o current time$

Results

Proceeding with experiments^[7,8]:

Method	Precision	Recall	F-measure
Convolutional networks	0.42	0.23	0.31
Convolutional networks	0.40	0.46	0.40
+ Attention	0.42	0.42	0.41
Human labeling agreement	0.62	0.49	0.55

^[8] Nicolay Rusnachenko and Natalia Loukachevitch. "Studying Attention Models in Sentiment Attitude Extraction Task". In: *Proceedings of the 25th International Conference on Natural Language and Information Systems.* 2020. doi: 10.1007/978-3-030-51310-8_15. url: https://doi.org/10.1007/978-3-030-51310-8_15.

Attention weights analysis

```
ATT-BLSTM (SL)
leading such a game, E<sub>subi</sub> will finally lose<sub>nos</sub> trust-in<sub>nos</sub> E<sub>obi</sub> and country E
however over the past few months due to combination circumstances \mathbf{E}_{subj} gradually renew_{pos} cautions
interaction with E<sub>obi</sub>
But E_{subj} consequently emphasizes its interest<sub>ros</sub> in normalizing<sub>ros</sub> relationships with E_{obj} ( <NUM> february
<NUM> year <DOT> took place the visit E at E and its conversation pos with the spiritual leader E and with
president E )
                                                      ATT-BLSTM (DS)
leading such a game, E_{subj} will finally lose_{pos} trust-in_{pos} E_{obj} and country E
         over the past few months due to combination of circumstances E<sub>subj</sub> gradually renew<sub>pos</sub> cautious
however
interaction with E<sub>obi</sub>
But E_{subj} consequently emphasizes its interest v_{pos} in normalizing v_{pos} relationships with E_{obj} ( <NUM> february
<NUM> year <DOT> took place the visit E at E and its conversation pos with the spiritual leader E and with
president E )
```

Conclusion

- Importance of News Titles: in most cases easier to analyse;
- Importance of Lexicons: we may treat them as aspects;
- $\hbox{$\bullet$ Conventional methods} \to \hbox{Neural Networks} \to \hbox{Attentive-Based Neural Networks} \to \\ \dots \hbox{$\mathsf{Language Models}^{[9]}$ (BERT, GPT, etc.);}$

^[9] Jacob Devlin et al. "Bert: Pre-training of deep bidirectional transformers for language understanding". In: arXiv preprint arXiv:1810.04805 (2018).

Introduction
Machine Learning Methods
Manually developed collection
Automatically annotated collection
Conclusion

Links

http://nicolay-r.github.io