Paper Skimming Session: ETC: Encoding Long and Structured Inputs in Transformers

Nicolay Rusnachenko

rusnicolay@gmail.com https://nicolay-r.github.io/ Newcastle University England

Long-Ranged Input for Transformers

Main limitation for input $X \in \mathbb{R}^N$:

• $O(N^2)$ original self-attention^[1] computation complexity;

How to address this problem:

- Sparse version of self-attention: Reformer, Longformer^[2]
- 2 #1 with Global Attention
- + Structurization^[3] limit attention within sentences, paragraphs, etc. via masking

[1] Ashish Vaswani et al. "Attention is all you need". In: Advances in neural information processing systems 30 (2017).

[2] Iz Beltagy, Matthew E Peters, and Arman Cohan. "Longformer: The long-document transformer". In: *arXiv preprint arXiv:2004.05150* (2020).

[3] Joshua Ainslie et al. "ETC: Encoding long and structured inputs in transformers". In: *arXiv preprint arXiv:2004.08483* (2020).

Position Encoding Global + Local Attention Structuring

Relative Position Encoding

BERT^[4] exploits absolute position encoding $X \in \mathbb{R}^N$. ETC proposes **relative**:

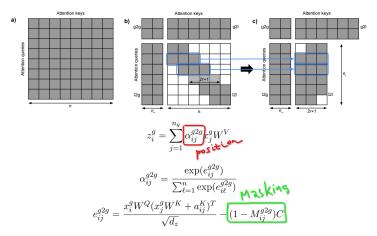
- Now position is label $I_{i,j}$ of **connection** of $x_i \in X$ with other X
- Distance clipping: k limit window
 - *I_k* outside after *i*,
 - I_{-k} outside radius k before i.
- **Result** in α_l^K learnable vectors of relative positions

^[4] Jacob Devlin et al. "Bert: Pre-training of deep bidirectional transformers for language understanding". In: *arXiv preprint arXiv:1810.04805* (2018).

Position Encoding Global + Local Attention Structuring

Global + Local Attention

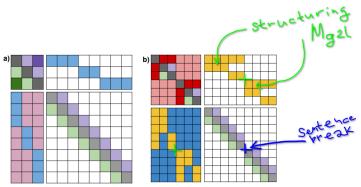
- *n*_l main input components: **now windowed** (sparsed)
- n_g global input components ($n_g << n_l$)



Position Encoding Global + Local Attention Structuring

Structuring via Masking

- Using masking: $M_{I2I}, M_{I2g}, M_{g2I}, M_{I2I}$ (edges between tokens)
- colors different connection types: part-of, is-a, etc.
 - **blue** l2g connection with global tokens.
- Structuring: segments (sentences), using [SENT_SEP] special token
- Masking find its application in pre-training.



NQ Dataset Affection on future models

Results (NQ^[5])

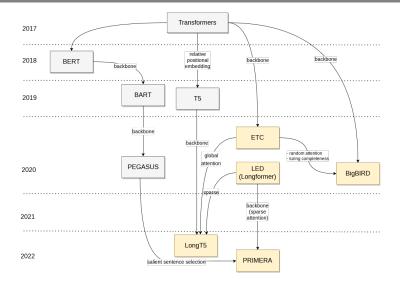
- Significant improvement when ETC 4K input (110M)¹ vs. BERT_{base} (109M).
- Next improvement: double radius \approx usage 8K input. (169M)
- Next improvement: Switch to ETC large + Weights lifting from RoBERTa^[liu2019roberta]. (558M)

¹ shared, no CPC, no hard g2l

^[5] Tom Kwiatkowski et al. "Natural Questions: A Benchmark for Question Answering Research". In: Transactions of the Association for Computational Linguistics 7 (2019), pp. 452-466. doi: 10.1162/tacl_a_00276. url: https://aclanthology.org/Q19-1026.

NQ Dataset Affection on future models

Affection on Future Models for Text Summarization



Conclusion

Main Contributions as as follows:

- Sparsed attention as in BigBIRD, Longformer
- Structuring during pretraining stage
- Studies address transformer encoding part \rightarrow weights lifting from BERT/RoBERTa due to a minor modifications towards attention complexity computation reduction